COMAND – Chromatic Optimized Multiple Analyzer Neutron Detector

- J. Ziegler, D. W. Lee, C. Majkrzak,
- B. Maranville, N. Maliszewskyj

CANDOR

CANDOR Analyzer Array

Spectrometer Coverage

NST Center for Neutron Research

CANDOR Analyzer Array

CANDOR Analyzer Array

Characteristics of Neutron Sensor

- Highly efficient neutron detection (target 90%)
- \bigcirc Good neutron/gamma discrimination ($\approx 10^7$)
- Sensitive area 1 cm × 3 cm
- Extremely thin (≈ 1 mm)

Neutron Converter Element

- •6LiFZnS(Ag) scintillator
 - •Eljen Technologies (EJ-426-ALC)
- •WLS Fibers conduct light to concentrator
 - •Kuraray Y-11 (500)
- SiPM photosensor
 - Zecotek, sensL, CPTA, Hamamatsu

Neutron Converter Element

Top: Test model of a scintillation detector. The optical fibres (green) will be embedded in the lithiated scintillator material.

Top: Scan of a neutron beam across the detector prototype in a direction normal to the fiber orientation. The target is an efficiency of >90%.

Innovations in Measurement Science

- NIST Competitive Intramural Funding
- COMAND award in 2011
 - \$500K/yr for 3 years
 - Renewable for an additional year

Project Timelines

- Year 1 (Single Element) Optimization of neutron detection performance (test and characterize embedding of WLS fibers in scintillator material including minimization of Υ sensitivity)
- Year 2 (Single Element) Development of electronics suitable for SiPMs (test and characterize light-to-current proportionality, optimize Υ discrimination). Development of process to plate scintillator slabs with absorbers and Ni to form guide channels.
- Year 3 (Module) Design, construct, and test modular energy dependent array of analyzers and scintillation plates
- Year 4 (Module) Completion and testing of prototype

Project Staffing (Fulltime)

- Detector Development Specialist
 - Dr. Dongwon Lee
- Electrical Engineer
 - Mr. Jeffrey Ziegler
- Data Acquisition/Software Engineer
 - Recruiting

Test Rig for Embedded WLS Fibers

NG1 Test Beam

Test Rig

Center for Research

Pulse Height Discrimination

³He Gas Filled Tube

Can use pulse height discrimination

Scintillator

• Pulse height discrimination is problematic

Pulse Shape Discrimination

- Traditional charge integration method using two charge integration windows
- Prompt window without delay followed by delayed window

Raw Signal

Gamma Discrimination (Beam On)

Gamma Discrimination (Beam Off)

GEANT4 Simulations

Simulations include:

Neutron capture

+

Scintillation

+

WLS collection and transmission

+

Photo Detection

Comparison with Experiment

Help From an Unexpected Source

Kansas State University
Semiconductor Materials And Radiological
Techniques (SMART) Laboratory
(Doug McGregor & Phil Ugorowski)

Microstructured Neutron Detectors (MSND)

- •Patterned diodes with ⁶LiF neutron converters
- •Can be fabricated in 1cm × 3 cm × 1mm active volumes
- •Measured thermal neutron efficiency ≈ 40%

MSND Pulse Height Spectrum

Summary

- The NCNR is engaged in a detector development project funded by an intramural source
- The CANDOR instrument will use energy-analyzing modules with neutron sensitive elements
- Work has commenced to build tools and to characterize scintillator-based neutron sensors
- The NCNR is collaborating with KSU to evaluate a solid state alternative neutron sensor

